x^2-23x-99=0

Simple and best practice solution for x^2-23x-99=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-23x-99=0 equation:



x^2-23x-99=0
a = 1; b = -23; c = -99;
Δ = b2-4ac
Δ = -232-4·1·(-99)
Δ = 925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{925}=\sqrt{25*37}=\sqrt{25}*\sqrt{37}=5\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-5\sqrt{37}}{2*1}=\frac{23-5\sqrt{37}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+5\sqrt{37}}{2*1}=\frac{23+5\sqrt{37}}{2} $

See similar equations:

| .5/2=3/x | | 56=0.04p | | 5/6x=1/4 | | 15(4x-1)-18=58x+15 | | -4x-15=6x+5 | | 3(7/2x)+2(1-x)=19 | | 10x/5-((5x-6))/4+(4x-2)/10=5+4x | | X^4+5x^2=-1 | | 10x/5-((5x-6))/4+(4x-2)/10=5 | | 48+2x=6x | | -16^2+32t+48=0 | | 6x-1=8x-17 | | 1/4y-18=4 | | 17x-13=4(4x+4)-3 | | 6r-7÷10=r÷4 | | -2m=3m-10 | | 4(3x-7)=16 | | 2x^2+5x=3x+11 | | 3(w+5)+w=2(w-1)+3 | | (4x+19)=(7x-15) | | 3(u+6)=-3(3u-5)+3u | | (2x+8)(x)=960 | | 2x+3x+3x=60 | | 3(m-1)-10=10-2(m+3) | | 48+2x=6× | | 8x+6-5(x+1)=6x+3 | | t/12=6/9 | | (2x-5)(x-+1)=12x | | 10x/5-((5x-6))/4+(4x-2)/10=-5 | | X²(4x-3)(5x-1)=0 | | 18x=153(5x-3) | | 27-2x=139 |

Equations solver categories